RESEARCH PAPER

Irrigation and NPK Requirement of Oil Palm for Tungabhadra Command Area

B.G.Masthana Reddy, D.R.Patil, Pattara, S.Arulraj and Hanama shetty

AICRP on palms, Agricultural Research Station Gangavathi, University of Agricultural Sciences Dharwad- 583 227

ABSTRACT

Field experiment was conducted at Agricultural Research Station, Gangavathi to work out the irrigation and NPK requirement of adult oil palm in black soils of Tungabhadra command area. Drip and basin irrigation recorded 24 and 22 per cent higher FFB yield over 50% basin irrigation. Application of 1200:600:2700 g N,P₂O₅ and K₂O/palm recorded higher FFB yield of 11.14 and 14.74 t/ha during 2005 and 2006 respectively. A combination of drip irrigation and 1200:600:2700 g N,P₂O₅ and K₂O/palm recorded higher FFB yield which, however, remained on par with the combination of basin irrigation and application of 1200:600:1200 N,P₂O₅ and K₂O/palm.

Key words : Oil Palm, Drip irrigation, FFB, net returns

Introduction

Oil Palm (*Elaeis guineensis* Jacq.) is a recently introduced perennial oilseed crop in India covering an area of 93153 ha in various states of India. Irrigation and fertilizers are critical inputs for higher yield in oil palm. Irrigation studies at Pedavegi revealed that drip irrigation with IW/CPE ratio of one recorded higher FFB yield (NRC-OP,2006). Similarly, application of 1200:600:1200 g N,P₂O₅ and K₂O palm⁻¹ recorded higher FFB yield after fourth year of planting under rainfed conditions at Palode (NRC-OP,2006). However such information is limited under irrigated conditions and hence the present investigation was taken up.

Materials and Methods

Field experiment was conducted at Agricultural Research Station, Gangavathi of University of Agricultural Sciences, Dharwad, Karnataka state. The soil was medium deep black clay and had a pH 8.3, available N 247 kg ha⁻¹, available P 23.8 kg ha⁻¹ and exchangeable K 456 kg ha⁻¹. Tenera palms developed from NRC-OP RS-Palode were planted during 1989. Three irrigation methods (50% basin irrigation(Io), basin irrigation(I,)and drip irrigation (I₂) as main plot and four

NPK levels (No NPK, 400:200:900; 800:400:1800 and 1200:600:2700 g N,P₂O₅ & K₂O palm⁻¹ year⁻¹) as sub plot treatments were tried in strip plot design with three replications along with control treatment of basin irrigation and 1200:600:1200 g N,P₂O₅ & K₂O palm⁻¹). Irrigation was scheduled based on the product of basin area and mean monthly evaporation expressed in I palm⁻¹day⁻¹. For drip irrigation half the quantity of water that is given to basin irrigation was provided. Fertilizers were applied in two equal splits. Observations on bunch yield and yield parameters were recorded for 2005 and 2006 and statistically analysed and presented.

Results and Discussion

Effect on FFB yield : The drip irrigation recorded 24 and 22% and basin irrigation recorded 21 and 18% higher FFB yield than 50% basin irrigation during 2005 and 2006 respectively (Table 1). The water requirement was 835 and 731 mm in the case of drip irrigation as against 1244 and 1282 mm the case of basin irrigation during 2005 and 2006 respectively implying a saving of 33 and 43 per cent in water.

Application of F_3 level NPK recorded higher FFB yield of 11.14 and 14.74 t ha⁻¹ during 2005 and

Treatments	FFB yield	ls (t ha¹)	No. of bu	nches palm ⁻¹	Bunch weig	ght (kg bunch ⁻¹)
Irrigation	2005	2006	2005	2006	2005	2006
I _o	7.36	9.23	3.67	4.28	13.11	14.50
I ₁	9.34	11.25	4.93	5.16	13.50	15.29
I ₂	9.69	11.86	4.77	5.11	14.10	16.19
CD (p=0.05)	1.71	1.55	NS	NS	0.68	NS
NPK levels						
Fo	6.03	6.88	3.34	3.81	12.20	12.73
F ₁	7.94	9.37	4.09	4.28	13.55	15.46
F ₂	10.07	12.14	5.30	5.50	13.45	15.58
F ₃	11.14	14.74	5.10	5.80	15.08	17.55
CD (p=0.05)	0.96	0.83	0.83	0.75	0.56	2.59
Interaction						
I _o F _o	4.83	5.80	2.83	3.56	10.32	11.31
I _o F ₁	6.44	8.48	3.27	3.90	13.44	15.47
I ₀ F ₂	8.83	9.94	4.43	4.90	13.91	14.26
I _o F ₃	9.36	12.7	4.13	4.76	14.78	16.96
I ₁ F _o	6.39	6.88	3.43	4.17	13.61	11.85
I ₁ F ₁	8.51	10.5	4.33	4.96	13.60	14.90
I ₁ F ₂	10.36	12.43	6.10	5.29	12.36	16.51
I ₁ F ₃	12.08	15.21	5.87	6.22	14.44	17.89
I ₂ F ₀	6.87	7.95	3.77	3.72	12.67	15.02
I_2F_1	8.88	9.13	4.67	3.98	13.61	16.00
I_2F_2	11.02	14.04	5.37	6.31	14.08	15.96
I_2F_3	11.98	16.30	5.30	6.43	16.05	17.79
control	11.30	15.61	6.00	6.80	13.20	16.06
CD (p=0.05)	NS	NS	NS	NS	1.15	NS

Table 1 : FF	3 yield and yield	I parameters of	oil palm a	as influenced by irrigatior	and NPK levels.
--------------	-------------------	-----------------	------------	-----------------------------	-----------------

 I_0 : 50% basin irrigation

: Basin Irrigation I_1

: Drip Irrigation ١,

 $\begin{array}{rcl} {\sf F}_{\rm o} & : & {\sf No}\;{\sf NPK} \\ {\sf F}_{\rm 1} & : & 400;200:900\;{\rm g\;N,P_2O_5\;\&K_2O\;palm^{-1}} \\ {\sf F}_{\rm 2} & : & 800;400:1800\;{\rm g\;} & _"_ \\ {\sf F}_{\rm 3} & : & 1200;600:2700\; _"_ \end{array}$

Control : $I_1x 1200:600:1200 \text{ N,P}_2O_5 \& K_2O/palm$

Treatments	Availa	ble Soil NPK (k	Net returns (Rs ha-1)		
Irrigation	AV.N	AV.P ₂ O ₅	AV.K ₂ O	2005	2006
I _o	161	21.38	833	17819	26216
I ₁	152	25.58	833	25411	35317
l ₂	161	21.02	800	24333	34286
CD (<i>p=0.05</i>)	NS	2.55	NS	3981	3056
NPK levels					
F _o	143	14.88	520	12439	17476
F ₁	165	20.40	711	20209	26629
F ₂	159	26.92	938	26722	37007
F ₃	165	28.45	1120	30715	46646
CD (<i>p=0.05</i>)	6.9	2.87	68.0	3621	2486
Interaction					
I _o F _o	140	13.46	533	9531	13896
I _o F ₁	177	20.64	800	14694	23889
I ₀ F ₂	159	24.99	907	23367	28362
I _o F ₃	168	26.44	1093	23685	38715
I ₁ F _o	149	16.67	560	12854	18726
I ₁ F ₁	149	23.61	667	24024	32949
I ₁ F ₂	149	30.18	987	28797	39567
I ₁ F ₃	159	31.85	1120	35970	50025
I ₂ F ₀	140	14.53	467	14931	19807
I ₂ F ₁	168	16.94	667	21909	23049
I ₂ F ₂	168	25.57	920	28002	43093
I_2F_3	168	27.05	1147	32490	51196
Control	160	25.50	700	34105	53500
CD (<i>p=0.05</i>)	NS	NS	80.73	NS	3427

Table 2 : Soil available NPK and economics of Oil palm as influenced by irrigation and NPK levels.

 I_0 : 50% basin irrigation F_0 : No NPK I_1 : Basin Irrigation F_1 : 400;200: I_2 : Drip Irrigation F_2 : 800:400:

I₂: Drip Irrigation

 F_1 : 400;200:900 g N, $P_2O_5 \&K_2O \text{ palm}^{-1}$

F₂ : 800;400:1800 g —"—

F₃ : 1200;600:2700 _____"____

Control : $I_1x 1200:600:1200 \text{ N}, P_2O_5 \& K_2O/palm$

2006 which was significantly superior than other NPK levels. The treatment recorded 46 and 53 per cent higher FFB yield over no NPK control.

The interaction effect was non significant. The combination I_2F_3 recorded 11.98 and 16.30 t ha⁻¹ during 2005 and 2006 respectively followed by the combination I_1F_3 with an FFB yield of 12.08 and 15.21 t ha⁻¹ during 2005 and 2006 respectively. However, both I_1F_3 and I_2F_3 remained on par with the control treatment of basin irrigation and 1200:600:1200 g $N,P_2O_5 \& K_2O$ which recorded an FFB yield of 11.3 and 15.61 t ha⁻¹ during the 2005 and 2006. The results are in agreement with those reported from Palode (NRC-OP,2006).

The higher FFB yield in the case of F_3 level NPK was due to a combination of yield parameters mainly the bunch number and bunch weight. F_3 level NPK recorded significantly more number of bunches (5.10 and 5.80 no bunch⁻¹) and higher bunch weight (15.08 and 17.55 kg bunch⁻¹) than no NPK control and F_1 level NPK.

Among the treatment combinations I_2F_3 had higher mean number of bunches and higher mean bunch weight However the control treatment (Basin irrigation x 1200:600:1200 g N,P₂O₅ & K₂O palm⁻¹)also recorded similar number of bunches and mean bunch weight.

Economics : During both 2005 and 2006 net returns(NR) were significantly higher with basin or drip irrigation than 50% basin irrigation (Table 2). Similarly, F_3 level NPK recorded significantly higher NR of Rs 30715 and Rs 46646 ha⁻¹ during 2005 and 2006 than other NPK levels. Interaction effect was significantly higher NR of Rs 51196 ha⁻¹ followed by I_1F_3 with a NR of Rs 50025 ha⁻¹, which however, remained on par with control treatment with a net returns of Rs 53500 ha⁻¹ during 2006.

Soil analysis

Soil available N : Soil available N did not vary significantly for irrigation treatments. However all the

NPK levels recorded significantly higher available N (159-165 kg ha⁻¹ respectively) than no NPK control (143 kg ha⁻¹). Interaction effect remained non significant for available soil N.

Soil available P : Basin irrigation recorded significantly higher soil available P ($25.58 \text{ kg P}_2O_5 \text{ ha}^{-1}$) than no irrigation (21.38 kg ha^{-1}) or drip irrigation treatment (21.02 kg ha^{-1}).

Among the NPK levels it was significantly higher with either F_3 (28.45 kg P_2O_5 ha⁻¹) or with F_2 (26.92 kg ha⁻¹) level NPK than F_1 (20.4 kg ha⁻¹) or no NPK control (14.88 kg ha⁻¹). Interaction effect remained non significant.

Available K : The soil available K did not vary significantly for irrigation treatments. However, NPK levels had significant effect on available K. It was significantly higher in the case of F_3 level NPK (1120 kg K₂O ha⁻¹) as compared to other NPK levels. Similarly among the treatment combinations I_2F_3 (Drip irrigation x 1200:600:2700 g NPK) or I_1F_3 (Basin irrigation x 1200:600;2700 g NPK) recorded very high values of soil exchangeable K (1147 and 1120 kg K₂O ha⁻¹ respectively) indicating that scope exists for reduction of K fertilizers.

The study thus revealed that application of 1200:600:2700 g NPK palm⁻¹ either with basin or drip irrigation recorded higher FFB yields. However, the treatment had recorded very high levels of available soil potassium and also that FFB yields remained on par with the control treatment it can be inferred that application of 1200:600:1200 g N,P₂O₅ & K₂O palm⁻¹ appeared to be optimum for black soils under Tungabhadra command.

REFERENCES

NRC-OP,2006, Annual Report of National Research Centre for Oil Palm 2005-06.